A structure preserving front tracking finite element method for the Mullins–Sekerka problem
نویسندگان
چکیده
Abstract We introduce and analyse a fully discrete approximation for mathematical model the solidification liquidation of materials negligible specific heat. The is two-sided Mullins–Sekerka problem. discretization uses finite elements in space an independent parameterization moving free boundary. prove unconditional stability exact volume conservation introduced scheme. Several numerical simulations, including nearly crystalline surface energies, demonstrate practicality accuracy presented method.
منابع مشابه
A Dual–mixed Finite Element Method for the Brinkman Problem
A mixed variational formulation of the Brinkman problem is presented which is uniformly well–posed for degenerate (vanishing) coefficients under the hypothesis that a generalized Poincaré inequality holds. The construction of finite element schemes which inherit this property is then considered.
متن کاملA Hybrid Mortar Finite Element Method for the Stokes Problem
In this paper, we consider the discretization of the Stokes problem on domain partitions with non-matching meshes. We propose a hybrid mortar method, which is motivated by a variational characterization of solutions of the corresponding interface problem. For the discretization of the subdomain problems, we utilize standard inf-sup stable finite element pairs. The introduction of additional unk...
متن کاملA Discontinuous Finite Element Method for Solving a Multiwell Problem
Abstract. Many physical materials of practical relevance can attain several variants of crystalline microstructure. The appropriate energy functional is necessarily non-convex, and the minimization of the functional becomes a challenging problem. A new numerical method based on discontinuous nite elements and a scaled energy functional is proposed. It exhibits excellent convergence behavior for...
متن کاملA Finite Volume Element Method for a Nonlinear Parabolic Problem
We study a finite volume element discretization of a nonlinear parabolic equation in a convex polygonal domain. We show existence of the discrete solution and derive error estimates in L2– and H –norms. We also consider a linearized method and provide numerical results to illustrate our theoretical findings.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Numerical Mathematics
سال: 2022
ISSN: ['1570-2820', '1569-3953']
DOI: https://doi.org/10.1515/jnma-2021-0131